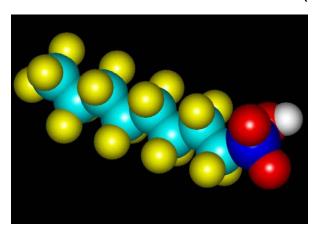


Umweltproblematik per- und polyfluorierter Chemikalien

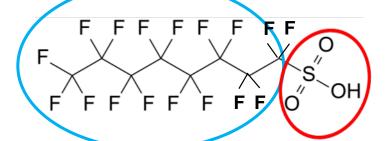

Begrifflichkeiten

PFC: Per- und polyfluorierte Chemikalien (= PFAS)

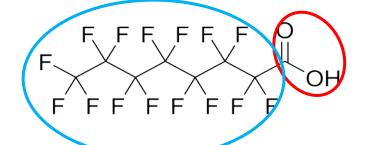
• PFT: Perfluorierte Tenside

• Fluortelomere: auch perfluorierte Tenside (→Herstellungsverfahren)

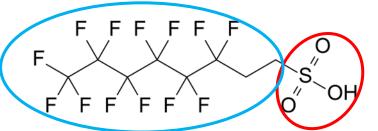
• PFOS: Perfluoroktansulfonsäure (Teil der PFT)



Grundlagen - Begrifflichkeit


Wichtige Vertreter

PFOS Perfluoroctansulfonsäure hydrophob/ lipophob


hydrophil / lipophob

PFOA Perfluoroctansäure

6:2 FTS (H4PFOS) 6:2 Fluortelomersulfonat

Herstellungsverfahren

1.Elektrochemische Fluorierung (ECF-Verfahren von 3M)

- Entstehung verzweigter und linearer Isomere
- Entstehung länger- und kürzerkettiger Homologe
- ca. 30 45 % PFOS, Rest Nebenprodukte
- kostengünstig

2. Fluortelomer-Verfahren

- Nur geradzahlige und lineare Homologe
- aktuell max. 95 % C6-Ausbeute, Rest länger- und kürzerkettige Homologe (Zielerreichung 2015 99,9 %)
- relativ teuer

Perfluorierte Chemikalien – Stoffeigenschaften

Besondere Eigenschaften aus Anwendungssicht:

- Chemisch extrem inert und widerstandsfähig
- Hohe thermische Stabilität
- Hohe biologische Stabilität
- Öl-, Wasser-, Fett- und Schmutzabweisend

Einsatzbereiche

Einsatzbereiche

- Textilindustrie
- Fotoindustrie
- Antihaftbeschichtungen
- Papierveredelung
- Galvanik
- Feuerlöschschäume

Umweltverhalten

- hohe thermische, chemische und biologische Stabilität
 - → kein/ kaum natürlicher Abbau
 - → hohe Langlebigkeit
- hohe Mobilität
 - →weltweite Verteilung
 - → Nachweis in allen
 Umweltkompartimenten

Toxikologische Eigenschaften

- Anreicherung in Lebewesen/ Nahrungskette
- fortpflanzungsschädigend
- krebsfördernd / krebserregend

→ teils PBT-Eigenschaften

Diffuse Einträge

- durch industrielle Einflüsse (Galvanik, Halbleiter, Papierindustrie etc.), Abwassereinleitungen
- durch konsumentennahe Produkte (Bekleidung, Teppiche, Verpackungen, Imprägnierungen, Skiwachse etc.)
 - → Globale Verbreitung

Diffuse Einträge

- produzieren i.d.R. niedrige ubiquitäre Hintergrundbelastungen im ng-Bereich
- belasten primär den Wasserpfad und damit aquatische Organismen
- führen aufgrund der Persistenz der PFT zur ubiquitären Verbreitung und am Ende der Nahrungskette zu relevanten Akkumulationen
- können nur durch konsequente Minimierung des Eintrags reduziert werden

Punktuelle Einträge

- durch Freisetzung bei Produktion und Transport
- Anwendung und Übungen mit PFC-haltigen Löschschäumen

Punktuelle Einträge

- produzieren i.d.R. hohe lokale Belastungen, die auch nach langen Zeiträumen noch vorhanden und zumeist sanierungsbedürftig sind
- führen zu hohen Kosten

Regulatorische Maßnahmen

 EU-Verbotsverordnung für PFOS von 2006 mit Ausnahmeregelungen

 In Feuerlöschschäumen seit dem 27.06.2011 nur noch max. 0,001 % = 10 mg/kg PFOS

• Kein Verbot für andere PFC

Umweltgefährdung durch fluorhaltige Löschschäume

- In Bayern aktuell 13 größere Schadensfälle mit Boden- und Gewässerbelastungen, davon:
 - 1 durch Abwassereinleitung (kleiner Vorfluter, große Kläranlage)
 - 1 durch Fluorpolymerproduktion
 - 1 durch bislang unbekannte Ursache
 - 10 durch Einsatz von AFFF-Löschschäumen
- 80 Kläranlagen über Richtwert belastet (i.d.R. durch industrielle Einleitungen)
- 1 Schadensfall (Entsorgung Löschwasser) abgeschlossen
- noch keine laufende Sanierung

Grenzwertproblematik

Internationale Grenz- und Richtwerte Grund-/Trinkwasser

		PFOS (µg/l)	PFOA (µg/l)
Deutschland	Gesundheitlicher Orientierungswert	0,3 (Summe aus PFOS und PFOA)	
UK	Maximum acceptable concentration in drinking water	0,3	10
US EPA	Health Based Value (HBV)	0,2	0,4
US Minnesota	Health Based Value (HBV)	0,3	0,3
US New Jersey	Health Based Value (HBV)	-	0,04
US North Carolina	Health Based Value (HBV)	-	2
Kanada	Provisional Drinking Water Guideline values	0,3	0,7

Internationale Grenz- und Richtwerte Umwelt

- US EPA Richtwerte Boden: 6 mg/kg PFOS, 16 mg/kg PFOA

Analog BBodSchV: 30 mg/kg PFOS

(jeweils Pfad Boden-Mensch, US Wohngebiete, BBodSchV Kinderspielplatz)

- Norwegen: Richtwerte Boden (Terr. Ökotox. Regenwürmer)

100 μg/kg PFOS

160 µg/kg PFOA

210 µg/kg 6:2 FTS

Bundesweit geltende Grenz- und Richtwerte

- Klärschlamm 100 µg/kg (gilt auch für Düngemittel)
- Trinkwasser-Richtwert PFOS + PFOA 0,3 μg/l
- Geringfügigkeitsschwelle Grundwasser PFOS 0,23 μg/l

EU-Umweltqualitätsnorm PFOS

(Anwendung ab 2018, Ziel 2027):

Oberflächengewässer 0,00065 µg/l

Küstengewässer 0,00013 µg/l

Biota (Fisch) 9,1 µg/kg

China (2014): 250 µg/l PFOS, 3520 µg/l PFOA

Wie entsteht ein **Grenzwert?**

PFOS

aus Biotest LC 50

3,6 mg/l

Maximal akzeptable Konzentration

QS biota Humans =
$$\frac{0.1 \times 0.15 \times 70 \text{ kg}}{0.115 \text{ kg/d}} = 9.1 \,\mu\text{g/kg}$$
 Fisch für den menschlichen Verzehr Fischverzehr / (2800 (BCF_{fish}) x 5 (BMF_{human})) = 14.000

Umweltqualitätsnorm (WRRL) 0,65 ng/l

Fahrplan zur Umsetzung der EU- Richtlinie

- Verabschiedung am 12.August 2013
- Anwendung ab 22. Dezember 2018
- Bis zu diesem Zeitpunkt auch Monitoring- und vorläufiges Maßnahmenprogramm
- Endgültiges Maßnahmenprogramm bis 22. Dezember 2021
- Zielerreichung bis 22. Dezember 2027

Bayerische Bewertungsleitlinien Grundwasser

Stoff	Vorläufiger Schwellenwert in µg/l	Begründung
PFOS	0,23	GFS der LAWA
PFOS + PFOA + PFHxS	0,3	Übernahme aus GOW, um PFHxS ergänzt
PFHpA, PFNA, PFDA	Je 0,3	Anlehnung an GOW für PFOA
PFHxA	1,0	Übernahme aus GOW
PFBS, PFPA	Je 3,0	Übernahme aus GOW
PFBA	7,0	Übernahme aus Leitwert

Bayerische Bewertungsleitlinien Oberflächengewässer

Stoff	PNEC _{aquatisch} (Predicted No Effect Concentration in µg/l)*	Quelle
PFOS	0,05	Untersuchungen zur chronischen Wirkung auf Fische durch das LfU
PFOA	570	Risk Assessment Report
FTA (6:2 – 10:2)	0,3 (?)	Vorläufige Abschätzung

Bayerische Bewertungsleitlinien Boden

- Keine Feststoffwerte zur Bewertung wg. stark matrixabhängigem Adsorptionsverhalten
- Sickerwasserprognose auf Basis von Eluatwerten (S4, 1:10)
- Orientierung an GFS bzw. GOW

PFOS-Ersatzstoffe

Fluorierte Ersatzstoffe:

- Novec 1230TM (C4-Basis, Dodecafluoro-2-methylpentan-3-on von 3M)
 - Verdacht auf Neuro- und immuntoxische Wirkungen
 - Geringere Anreicherung aber sehr mobil
 - persistent

- FORAFACTM /CapstoneTM (C6-Fluortelomer-Sulfonamide, DuPont)
 - Kaum (öko-)toxikologische Daten
 - Weniger toxisch und bioakkumulierend
 - Persistent
 - Möglicherweise toxikologisch relevante Abbauprodukte

Vorläufersubstanzen von persistenten PFC

PFC – Problematik heute

Ersatzstoffe für PFOS

Andere per- und polyfluorierte Verbindungen dürfen eingesetzt werden, aber:

- auch k\u00fcrzerkettige perfluorierte oder polyfluorierte Verbindungen und deren Abbauprodukte k\u00f6nnen eine Gefahr f\u00fcr Mensch und Umwelt darstellen
- Ökotoxikologische Untersuchungen fehlen weitgehend, wenige Informationen zu Abbauprodukten, Umweltrelevanz und Toxizität
- Abbau zu perfluorierten Verbindungen
- → der Umstieg auf C4 / C6-Technologie stellt grundsätzlich keine "umweltfreundliche" Alternative zu PFOS dar!

PFOS-Ersatzstoffe

Sind nicht fluorierte Ersatzstoffe umweltfreundlich?

- Siloxane / Silikoonpolymere
 - Nicht unerhebliche aquatische Toxizität
 - Bioakkumulierend
 - persistent
- Synthetische Tenside
 - i.d.R. nicht unerhebliche aquatische Toxizität, aber kaum Daten
 - hohe Sauerstoffzehrung in Gewässern
 - Biologisch meist abbaubar

Fazit I

- PFC sind aktuell eine der problematischsten Stoffgruppen
- generell nimmt die Bioakkumulation und die Toxizität mit der Moleküllänge ab
- alle PFC sind extrem langlebig in der Umwelt und reichern sich somit über die Zeit an
- reguliert ist aktuell nur PFOS, PFOA und längerkettige PFC (C11 C14)
 laufen momentan
- bei weiteren PFC kaum Daten zu Umweltverhalten, Bioakkumulation, Toxizität

Fazit II

- Fluorfrei ist nicht unbedingt identisch mit umweltfreundlich
- Ersatzstoffe für PFOS sind noch nicht ausreichend auf (öko-) toxikologische Wirkung untersucht
- Bei Neuentwicklungen sollte auch die Umweltgefährdung mit berücksichtigt werden